Molecular near-field antenna effect in resonance hyper-Raman scattering: intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions.
نویسندگان
چکیده
We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute-solvent dipole-dipole and dipole-quadrupole interactions. It is shown that the infrared active modes arise from the dipole-dipole interaction, whereas Raman active modes from the dipole-quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.
منابع مشابه
Solute-solvent intermolecular vibronic coupling as manifested by the molecular near-field effect in resonance hyper-Raman scattering.
Vibronic coupling within the excited electronic manifold of the solute all-trans-β-carotene through the vibrational motions of the solvent cyclohexane is shown to manifest as the "molecular near-field effect," in which the solvent hyper-Raman bands are subject to marked intensity enhancements under the presence of all-trans-β-carotene. The resonance hyper-Raman excitation profiles of the enhanc...
متن کاملIntensity enhancement and selective detection of proximate solvent molecules by molecular near-field effect in resonance hyper-Raman scattering.
A new molecular phenomenon associated with resonance hyper-Raman (HR) scattering in solution has been discovered. Resonance HR spectra of all-trans-beta-carotene and all-trans-lycopene in various solvents exhibited several extra bands that were not assignable to the solute but were unequivocally assigned to the solvents. Neat solvents did not show detectable HR signals under the same experiment...
متن کاملAnalyzing the Optical Properties and Peak Behavior Due to Plasmon Resonance of Silver Cubic-Shape Nanostructures by Means of Discrete Dipole Approximation
In this article, the optical properties of silver cubic-shape nanostructures (SCNs) were analyzed by employing the discrete dipole approximation (DDA) in aqueous media. The absorption, dispersion and extinction cross-sections of these nanostructures were calculated based on the wavelength change of the incident light in the visible and near infrared region. Moreover, the height change, waveleng...
متن کاملDesign, Simulation and implementation of active dual-band dipole antenna using a series stub
In this paper, a new method for designing an active dual-band dipole antenna is proposed. The operating frequencies of the proposed antenna are 150 and 450 MHz that are usually used in military applications. Using a series stub is the main idea in the proposed dual-band antenna, where it makes an independent resonance frequency higher than the main resonance frequency of a conventional dipole. ...
متن کاملMode-Selective Surface-Enhanced Raman Spectroscopy Using Nanofabricated Plasmonic Dipole Antennas
Mode-selective surface-enhanced Raman spectroscopy (SERS) is demonstrated using plasmonic dipole antennas fabricated with electron beam lithography. An∼10× change of the relative enhancement between two different Raman modes is observed when the resonance frequency of the plasmonic antennas is tuned over the Raman modes by varying the geometrical parameters of the antennas, i.e., changing their...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 140 20 شماره
صفحات -
تاریخ انتشار 2014